Flight mechanics and flight control for a multibody aircraft
Long-endurance operation at high altitudes
Format: 14,8 x 21,0 cm
Erscheinungsjahr: 2019
Flugzeuge in der Form von sogenannten Höhenplattformen (engl. High-Altitude Platform Systems, HAPS) werden seit einigen Jahren als kostengünstige Ergänzung zu teuren Satelliten betrachtet. Diese Flugzeuge können für ähnliche Kommunikations- und überwachungsaufgaben eingesetzt werden. Zu den gegenwärtigen Konzepten solcher Fluggeräte, die bereits erfolgreich im Flugversuch eingesetzt wurden, zählen der Helios von AeroVironment und der Airbus Zephyr, der eine Flugdauer von fast 624 Stunden (26 Tagen) erreicht hat. Alle diese HAPS-Flugzeuge besitzen einen Flügel langer Streckung, der in Leichtbauweise konstruiert ist. Hieraus resultieren in böiger Atmosphäre hohe Biegemomente und starke strukturelle Belastungen, die zu überbelastungen führen können. Flugunfälle beispielsweise von Googles Solara 50 oder Facebooks Aquila belegen dies. Insbesondere in der Troposphäre, in der das aktive Wetter stattfindet, treten Böenlasten auf, die die Struktur zerstören können. Der Airbus Zephyr, der bisher als einziges HAPS-Flugzeug frei von Flugunfällen ist, besitzt nur eine sehr geringe Nutzlast. Daher kann er die Anforderungen an zukünftige HAPS-Flugzeuge nicht vollständig erfüllen.
Um die Schwachstellen solcher Ein-Flügel-Konzepte zu überwinden, wird in dieser Arbeit ein alternatives Flugzeugkonzept betrachtet, das als Mehrkörperflugzeug bezeichnet wird. Das Konzept geht von mehreren, an den Flügelspitzen miteinander verbundenen Flugzeugen aus und beruht auf Ideen des deutschen Ingenieurs Dr. Vogt. Dieser hatte in den USA kurz nach Ende des Zweiten Weltkrieges bemannte Flugzeuge aneinanderkoppeln lassen. Hierdurch ergab sich ein Flugzeugverbund mit einem Flügel langer Streckung. Damit konnte die Reichweite des Verbundes gesteigert werden. Geoffrey S. Sommer griff die Idee von Vogt auf und lies sich eine Flugzeugkonfiguration patentieren, die aus mehreren, unbemannten Flugzeugen besteht, die an den Enden der Tragflächen miteinander gekoppelt sind. Die Patentschrift gibt jedoch keinen Einblick in die Flugleistungen, die flugmechanische Modellierung oder die Regelung eines solchen Fluggerätes. Vereinzelt existieren Veröffentlichungen, die sich mit den Flugleistungen von gekoppelten Luftfahrzeugen beschäftigen. Eine tiefgreifende, vollständige flugmechanische Analyse fehlt jedoch bisher.
Hier setzt die vorliegende Arbeit an. Ein Fluggerät basierend auf dem Konzept des Mehrkörperflug-zeugs wird erstmalig hinsichtlich der Flugmechanik und Flugregelung untersucht. In einer Flugleistungsbetrachtung wird das Flugzeugkonzept genau analysiert und die Vorteile hinsichtlich der Biegemomente und der Flugleistungen klar herausgestellt. Die Grenzen des Einsatzes im Flugbetrieb werden mithilfe aerodynamischer Optimalpunkte aufgezeigt. über die Lager an den Flügelspitzen, die eine relative Roll- und Nickbewegung der Flugzeuge untereinander ermöglichen, ergeben sich durch die Einstellung unterschiedlicher Längslage- und Hängewinkel zusätzliche Freiheitsgerade im Entwurf. Die Verwendung unterschiedlicher Nicklagewinkel der einzelnen Flugzeuge reduziert beispielsweise den induzierten Widerstand weiter und steigert die Flugleistung. Durch die symmetrische, entlang der Spannweite jedoch nicht homogene Auftriebsverteilung ist auch eine laterale Trimmung der einzelnen Flugzeuge in der Formation notwendig. Hier stellt die Arbeit eine neuartige Möglichkeit vor, um diese Trimmung ohne zusätzlichen parasitären Widerstand mittels Verschiebung der Batteriemasse entlang der Halbspannweite umzusetzen.
Weiterhin wird ein vollständiges flugdynamisches Modell für über mechanische Lager verbundene Luftfahrzeuge aufgestellt und analysiert. Für diese Analyse wird eine hypothetische Torsions- und Biegefeder zwischen den Flugzeugen modelliert. Sind die Federsteifigkeiten hinreichend hoch, besitzt das flugdynamische Modell Eigenschaften, die einem elastischen Flugzeug entsprechen. Starrkörper- und elastische Eigenbewegungsformen sind in diesem Fall klar separiert. Bei immer weiterer Reduzierung, bis auf eine Federsteifigkeit von Null, kommt es zu Kopplungen zwischen den klassischen, flugmechanischen Eigenbewegungsformen und den Moden aus den zusätzlichen Freiheitsgraden. Dies stellt den Auslegungsfall für das Mehrkörperflugzeug dar. Hierbei verändert sich die Eigenstruktur (engl. eigenstructure) des Flugzeugs und normale, bei einem starren Flugzeug beobachtbare Bewegungen gegenüber dem inertialen Raum sind nicht mehr erkennbar. Zusätzlich zeigt die Strecke instabiles Verhalten.
Basierend auf dem nichtlinearen, flugdynamischen Modell werden mit verschiedenen Methoden Regler entworfen, die die Regelstrecke stabilisieren und dem Flugzeug eine Streckenstruktur zuweisen, die derjenigen klassischer Flugzeuge ähnelt. Zudem soll durch die Regler eine vorgegebene Form des Flugzeugverbundes beibehalten werden, die Fahrt, der Längs- und Rolllagewinkel sollen geregelt und Störungen unterdrückt werden. Als Auslegungsverfahren werden Theorien der Zustandsregelungen im Zeitbereich (Eigenstrukturvorgabe) und Frequenzbereich (H-infinity loop-shaping) verwendet. Hierdurch wird durch die inneren Regelschleifen ein Verhalten des Mehrkörperflugzeugs erzielt, das dem eines starren Flugzeugs entspricht. Für die äußeren Regelschleifen werden anschließend klassische Konzepte von Autopiloten verwendet. Im Ergebnis ist eine Regelung des Flugweges über Grund des Mehrkörperflugzeugs und somit ein tatsächlicher Betrieb als HAPS möglich. Die Funktionalität des Reglers wird abschließend in nichtlinearen Simulationen mit vollständiger Flugdynamik verifiziert.