Über den Wirkmechanismus von Polyethylenglykol als Additiv zur Gefügeverdichtung im Rotationsformverfahren
Format: 14,8 x 21,0 cm
Erscheinungsjahr: 2018
Eines der Hauptprobleme beim Rotationsformen sind verbleibende eingeschlossene Luftblasen, die die Sinterzeit verlängern und die Festigkeit, aber auch die Ästhetik des Bauteils beeinträchtigen. Überraschenderweise konnten Kulikov und Kollegen (2009) zeigen, dass der Zusatz einer geringen Menge von Polyethylenglykol (PEG) den Sinterprozess erheblich beschleunigt und den Anteil verbleibender Luftblasen drastisch reduziert. In der vorliegenden Arbeit wird der Wirkmechanismus von PEG untersucht, der sich im Wesentlichen auf die geringere Gassättigung der Polymerschmelze bei PEG-Zusatz zurückführen lässt, sowie das Potenzial der dadurch möglichen Verbesserung der mechanischen Eigenschaftswerte. Rheologischen Untersuchungen zeigen, dass PEG die Viskosität von LLDPE nur bei niedrigen Temperaturen minimal absenkt. Jedoch ist die Viskositätsabnahme nicht ausreichend, um einen schnelleren Sinterfortschritt herbeizuführen. 2-Partikel-Sinterversuche, die sich mit dem Modell von Bellehumeur hervorragend beschreiben lassen, belegen jedoch einen gesteigerten Wärmetransport bei PEG-Zusatz. Sinterexperimenten mit Haufwerken aus LLDPE-Partikeln und PEG-Zusatz zeigen, dass die Wirkung des PEGs umgehend nach dem Aufschmelzen des LLDPEs eintritt. Das PEG schmilzt bei niedrigeren Temperaturen auf als das LLDPE und benetzt beim Aufschmelzen die LLDPE-Partikel. Dadurch wird Luft aus den Pulverzwischenräumen herausgedrückt und der Luftanteil, der von der Schmelze beim Aufschmelzen in Form von Blasen eingeschlossen wird, ist geringer. Bei einer weiteren Zunahme der Temperatur erhöht sich die Gaslöslichkeit bzw. die Sättigungskonzentration der Polymerschmelze. Als Folge des niedrigeren Luftanteils ist die Schmelze untersättigt und die Luft in den verbliebenen Blasen diffundiert schneller in die Schmelze. Die zeitliche Vermessung des Blasendurchmessers und dessen mathematische Beschreibung mit dem Modell von Gogos zeigen, dass der Sättigungsgrad der Polymerschmelze die treibende Kraft bei der Blasendiffusion ist und die Lebensdauer einer eingeschlossenen Luftblase im Rotationsformprozess maßgeblich bestimmt. Dies belegen auch Sinterversuche mit untersättigten LLDPE-Schmelzen, die bei partiellem Vakuum durchgeführt wurden: Sättigungsrade von 70 bis 80 % führen zu einem blasenfreien Gefüge. Für eine Steigerung der Effektivität des Rotationsformprozesses gibt es danach zwei Möglichkeiten, nämlich PEG-Zusatz oder die Anwendung eines partiellen Vakuums während des Sintervorgangs. PEG-Zusatz zeigt bereits in sehr geringen Massenanteilen eine signifikante Verbesserung der mechanischen Eigenschaften in rotationsformenden und sinternden Herstellungsverfahren. So kann beim Rotationsformen mit der Zugabe von 0,2 wt.% PEG die Kerbschlagzähigkeit um 33 %, der Zugmodul um 23 %, die Streckspannung um 5 % und die Bruchdehnung um 83 % gesteigert werden. Die Produktivität des Rotationsformverfahrens kann somit je nach Bauteil um ca. 20–30 % gesteigert bzw. 30–40 % der Heizenergie eingespart werden. Auch die Anwendung eines partiellen Vakuums von 700 mbar führt zu einer deutlichen Steigerung der mechanischen Eigenschaften. So konnten z. B. die Kerbschlagzähigkeit um 15 %, das Zugmodul um 7 %, die Streckspannung um 9 % und die Bruchdehnung um 71 % erhöht werden.