From linear to long-chain branched poly(ethylene terephthalate) – reactive extrusion, rheology and molecular characterization

Umfang: 185 Seiten
Format: 14,8 x 21,0 cm
Erscheinungsjahr: 2017
ISBN 978-3-7983-2891-4
12,00 

Polyethylenterephthalat (PET) zeichnet sich durch hervorragende mechanische Eigenschaften, sowie chemische Beständigkeit und Barriereeigenschaften aus und findet insbesondere in der Verpackungsindustrie Verwendung. Die Neigung zur Degradation und die wegen der linearen Kettenmoleküle geringe Viskosität schränken jedoch die Verarbeitbarkeit von PET wie beispielsweise das Schäumen und Folienblasen erheblich ein. In der vorliegenden Arbeit wird der Einfluss der thermischen Stabilität während der Verarbeitung von drei linearen industriellen PET-Typen untersucht, die sich durch Molmasse und Herstellungsverfahren unterscheiden. Des Weiteren wird langkettenverzweigtes PET (LCBPET) durch reaktive Verarbeitung mit drei verschiedenen multifunktionalen Kettenverlängerern, Pyromellitsäuredianhydrid (PMDA), Tetra- glycidyl-Diamino-Diphenyl-Methan (TGDDM) und Triphenylphosphit (TPP), hergestellt und charakterisiert. Durch die experimentelle Bestimmung der linearen und nichtlinearen rheologischen Eigenschaften der Schmelze und ihre Beschreibung mit Hilfe des sogenannten „Molecular Stress Function“ (MSF) Modells gelingt eine quantitative Analyse des Materialverhaltens. Die molekulare Analyse wird zusätzlich durch die Ergebnisse von Gelpermeationschromatographie (GPC bzw. SEC) in Verbindung mit Lichtstreumessung gestützt. Die Untersuchungen der thermischen Stabilität von linearem PET im linear-viskoelastischen Bereich zeigen einen abnehmenden Speichermodul und somit ein thermo-oxidatives Degradationsverhalten in Luftatmosphäre. In inerter Stickstoffatmosphäre tritt hingegen nur thermische Degradation auf, gleichzeitig führt jedoch eine Polykondensationsreaktion zu einem Anstiegen des Moduls [Kruse et al., 2013]. Mit einem exponentiellen Regressionsansatz kann der anfängliche Zustand des Moduls in beiden Atmosphären zum Zeitpunkt Null, der dem Einbringen der Probe in das Rheometer entspricht, rekonstruiert werden. Die sich aus diesem Ansatz ergebende Zeitkonstante erlaubt es, quantitative Zusammenhänge zwischen der thermischen Stabilität der drei PET-Sorten und deren Molmasse sowie dem Herstellungsverfahren der PET-Typen aufzuzeigen. So weist hochmolekulares PET eine höhere Stabilität in Stickstoff und eine geringere Stabilität in Luft auf und umgekehrt. Hauptursache für dieses Verhalten ist die unterschiedliche Konzentration an Hydroxylendgruppen, die je nach Molmasse und Herstellungsmethode der jeweiligen PET-Typen variiert. Mit Hilfe der „Time-Resolved Mechnical Sprectroscopy“ konnte die sich ändernde Viskosität über ein weites Frequenzspektrum und zu einer beliebigen Messzeit in beiden Atmosphären bestimmt werden. Wesentliche Ergebnisse dieser Untersuchung sind der Nachweis des Auftretens von (i) einem Weichmachereffekt bedingt durch die thermische und thermo-oxidative Degradation und den daraus resultierenden Oligomeren, (ii) dreidimensionaler Vernetzung mit der Ausbildung einer Fließgrenze, (iii) Diffusionsprozessen, die Einfluss auf die Polykondensationsreaktion haben, (iv) Wandgleiten, bedingt durch die Ablagerung von Nebenprodukten auf den Platten des Rheometers und (v) einem verbreiterten Scherverdünnungbereich [Kruse and Wagner, 2016]. Die Extrusion von linearem PET mit einem Doppelschneckenextruder unter industriellen Bedingungen führt zu einer starken Abnahme der Viskosität, die hauptsächlich durch Scherung und weniger durch thermo-oxidativen Abbau verursacht wird. Bei der reaktiven Verarbeitung der drei PET-Typen mit den drei verschiedenen Kettenverlängerern erwies sich das dreifunktionale TPP auf Grund von Toxizität und Lagerinstabilitäten als unbrauchbar. Die Verarbeitung der beiden vierfunktionalen Kettenverlängerer, PMDA und das epoxidhaltige TGDDM, führt zu erhöhter Viskosität, erhöhter Dehnverfestigung und erhöhter thermischer Stabilität mit zunehmender Konzentration des jeweiligen Kettenverlängerers. Das beschriebene Verhalten zeigt sich sowohl am Speicher- und Verlustmodul und dem daraus abgeleiteten Verlustwinkel, als auch an der Fließaktivierungsenergie und der Dehnviskosität. Dabei lassen sich die gemessenen Dehnviskositäten sehr präzise mit dem MSF-Modell beschreiben und die beiden nichtlinearen Modelparameter, β und f_max^2 ermöglichen eine quantitative Analyse der Verzweigungsstruktur und der Molekülstreckung. So zeigt die Modifiziereng von hohen PMDA-Konzentrationen und dem hochmolekularen PET eine mehr kammartige Struktur im Vergleich zu den beiden niedermolekularen PET-Typen, die eine baumartige Molekülstruktur und eine höhere Molmasse nach der reaktiven Extrusion aufweisen. Beide Effekte können mit der höheren OH-Endgruppenkonzentration der beiden niedermolekularen PET-Typen erklärt werden. Zu hohe Zusätze von TGDDM führen zu einem hochverzweigten und gelartigen Polymer. Das Bruchverhalten bei der uniaxialen Dehnung von mit einem hohen Zusatz von PMDA hergestellten langkettenverzweigten PET wird von einer limitierenden Bruchspannung bestimmt. Demgegenüber bestimmt eine maximale Dehnung das Bruchverhalten des mit einem hohen TGDDM-Zusatz hergestellten LCB-PET, verursacht durch ein kovalent gebundenes Polymernetzwerk. Die GPC Messungen mit drei Detektoren wurden an LCB-PET durchgeführt, das auf Basis der hochmolekularen PET-Type hergestellt wurde. Die molekulare Analyse der mit PMDA und TGDDM modifizierten Proben zeigt eine deutliche Zunahme der mittleren Molmassen, Molmassenverteilungsbreite, des Gyrationsradius und des hydrodynamischen Radius und bestätigt somit die rheologischen Ergebnisse. Das Auftreten von Verzweigungen wird außerdem durch den abnehmenden Mark-Houwink-Exponenten bei zunehmender Additivkonzentration verdeutlicht. Eine genauere Betrachtung weist auf eine sternartige Molekülstruktur bei geringer Zugabe beider Kettenverlängerer hin. Bei erhöhter Zugabe hingegen tritt eine kammartige Struktur bei PMDA und eine baumartige oder hochverzweigte Struktur bei TGDDM auf, wie auch aus den nichtlinearen viskoelastischen Messungen zu schließen ist. Insbesondere PMDA erweist sich als hervorragender Kettenverlängerer, der bei reaktiver Extrusion reproduzierbar eine sternartige, kammartige oder baumartige Molekülstruktur in Abhängigkeit von der verwendeten PET-Type und der PMDA-Konzentration ermöglicht und so das Verarbeitungsspektrum von PET auf neue Anwendungsgebiete erweitert.