Nowhere Dense Classes of Graphs
Characterisations and Algorithmic Meta-Theorems
Format: 14,8 x 21,0 cm
Erscheinungsjahr: 2016
Wir zeigen, dass jede Eigenschaft von Graphen aus einer nowhere dense Klasse von Graphen, die in der Präadikatenlogik formuliert werden kann, in fast linearer Zeit entschieden werden kann. Dieses Ergebnis ist optimal für Klassen von Graphen, die unter Subgraphen abgeschlossen sind (unter einer Standardannahme aus der Komplexitätstheorie).
Um den obigen Satz zu beweisen, führen wir zwei neue Charakterisierungen von nowhere dense Klassen von Graphen ein. Zunächst charakterisieren wir solche Klassen durch ein Spiel, das die lokalen Eigenschaften von Graphen beschreibt. Weiter zeigen wir, dass eine Klasse, die unter Subgraphen abgeschlossen ist, genau dann nowhere dense ist, wenn alle lokalen Nachbarschaften von Graphen der Klasse dünn überdeckt werden können. Weiterhin beweisen wir eine erweiterte Version von Gaifman“s Lokalitätssatz für die Prädikatenlogik, der eine Übersetzung von Formeln in lokale Formeln des gleichen Ranges erlaubt. In Kombination erlauben diese neuen Charakterisierungen einen effizienten, rekursiven Lösungsansatz für das Model-Checking Problem der Prädikatenlogik.
Die Charakterisierung der nowhere dense Graphklassen durch die oben beschriebenen Überdeckungen basiert auf einer bekannten Charakterisierung durch verallgemeinerte Färbungszahlen. Unser Studium dieser Zahlen führt zu neuen, verbesserten Schranken für die verallgemeinerten Färbungszahlen von nowhere dense Klassen von Graphen, insbesondere für einige wichtige Subklassen, z. B. für Klassen mit ausgeschlossenen Minoren und für planare Graphen.
Zuletzt untersuchen wir, welche Auswirkungen eine Erweiterung der Logik durch Ordnungs- bzw. Nachfolgerrelationen auf die Komplexität des Model-Checking Problems hat. Wir zeigen, dass das Problem auf fast allen interessanten Klassen nicht effizient gelöst werden kann, wenn eine beliebige Ordnungs- oder Nachfolgerrelation zum Graphen hinzugefügt wird. Andererseits zeigen wir, dass das Problem für ordnungsinvariante monadische Logik zweiter Stufe auf allen Klassen, für die bekannt ist, dass es für monadische Logik zweiter Stufe effizient gelöst werden kann, auch effizient gelöst werden kann. Wir zeigen, dass das Problem für nachfolgerinvariante Prädikatenlogik auf planaren Graphen effizient gelöst werden kann.