Algorithmic Aspects of Manipulation and Anonymization in Social Choice and Social Networks
Format: 14,8 x 21,0 cm
Erscheinungsjahr: 2016
Diese Dissertation stellt eine Untersuchung von verschiedenen kombinatorischen Problemen im Umfeld von Wahlen und sozialen Netzwerken dar. Das Hauptziel ist die Analyse der Berechnungskomplexität mit dem Schwerpunkt auf der parametrisierten Komplexität.
Dabei werden für jedes der untersuchten Probleme effiziente Algorithmen entworfen oder aber gezeigt, dass unter weit akzeptierten Annahmen solche Algorithmen nicht existieren können.
Die Probleme, welche im Kapitel 3 und im Kapitel 4 diskutiert werden, modellieren das Manipulieren einer gegebenen Wahl, bei welcher gewisse Beziehungen zwischen den Beteiligten angenommen werden. Dies kann so interpretiert werden, dass die Wahl innerhalb eines Sozialen Netzwerks stattfindet, in dem die Wähler oder die Kandidaten miteinander in Verbindung stehen.
Das Problem Combinatorial Candidate Control ONTROL, welches in Kapitel 3 untersucht wird, handelt von der Manipulation einer Wahl durch die änderung der Kandidatenmenge über welche die Wähler abstimmen. Genauer gesagt, gibt es einen externen Agenten, welcher neue Kandidaten hinzufügen oder existierende Kandidaten entfernen kann. Es wird eine kombinatorische Struktur über der Kandidatenmenge angenommen, so dass immer wenn der externe Agent einen Kandidaten hinzufügt oder entfernt, eine vordefinierte Kandidatenmenge (welche mit den ausgewählten Kandidaten in Beziehung steht) ebenfalls hinzugefügt bzw. entfernt wird.
Das Problem Combinatorial Shift Bribery, welches in Kapitel 4 untersucht wird, thematisiert ebenfalls die Manipulation einer Wahl. Hier allerdings kann der externe Agent Änderungen des Abstimmungsverhaltens einiger Wähler herbeiführen. Dabei wird eine kombinatorische Struktur über den Wählern angenommen, so dass der externe Agent die Position des von ihm präferierten Kandidaten bei mehreren Wählern entsprechend vordefinierter Muster gleichzeitig ändern kann.
Das Problem Election Anonymization, welches in Kapitel 5 untersucht wird, befasst sich ebenso mit Wahlen. Das Hauptanliegen hier ist es jedoch, die Privatsphäre der Wähler bei der Veröffentlichung der Stimmenabgaben zusammen mit einigen zusätzlichen (privaten) Informationen aufrecht zu erhalten. Die Aufgabe ist es eine gegebene Wahl so zu verändern, dass jede Stimmenabgabe mindestens k-fach vorkommt. Dadurch kann noch nicht einmal ein Gegenspieler einzelne Wähler identifizieren, wenn er die Stimmenabgaben einiger Wähler bereits kennt.
Die in Kapitel 6 und 7 untersuchten Probleme behandeln gleichermaßen Privatsphärenaspekte. Präziser gesagt, geht es darum, dass ein soziales Netzwerk (modelliert als Graph) veröffentlicht werden soll. Die Aufgabe ist es den Graphen zu anonymisieren; dies bedeutet man verändert den Graphen, so dass es für jeden Knoten mindestens k − 1 weitere Knoten mit dem selben Grad gibt. Dadurch wird erreicht, dass selbst ein Gegenspieler, welcher die Knotengrade einiger Knoten kennt, nicht in der Lage ist einzelne Knoten zu identifizieren.
Bei dem Problem Degree Anonymization by Vertex Addition, welches in Kapitel 6 untersucht wird, wird Anonymität durch Einführung neuer Knoten erreicht. Bei dem Problem Degree Anonymization by Graph Contractions, welches in Kapitel 7 untersucht wird, wird Anonymität durch die Kontraktion von möglichst wenigen Kanten erreicht.
Das Hauptanliegen dieser Dissertation in Bezug auf die obig genannten Probleme ist es die Grenzen der effizienten Lösbarkeit auszuloten. Insbesondere da die meisten dieser Probleme berechnungsschwer (genauer NP-schwer bzw. sogar schwer zu approximieren) sind, werden einige eingeschränkte Fälle und Parametrisierungen der Probleme betrachtet. Das Ziel ist es effiziente Algorithmen für sie zu entwickeln, welche in Polynomzeit laufen, wenn einige Parameter konstante Werte aufweisen, oder besser noch zu zeigen, dass die Probleme “fixed-parameter tractable” für die betrachteten Parameter sind. Wenn solche Algorithmen nicht gefunden werden können, dann ist es das Ziel zu beweisen, dass diese Probleme tatsächlich nicht “fixed-parameter tractable” bezüglich der entsprechenden Parameter sind, oder noch besser zu zeigen, dass die Probleme NP-schwer sind, sogar wenn die entsprechenden Parameter konstante Werte aufweisen.