Fixed-Parameter Linear-Time Algorithms for NP-hard Graph and Hypergraph Problems Arising in Industrial Applications
Format: 14,8 x 21,0 cm
Erscheinungsjahr: 2014
Diese Dissertation beschäftigt sich mit der Entwicklung effizienter Algorithmen zur exakten Lösung vier ausgewählter NP-schwerer Probleme aus der Ablaufplanung, Stahlverarbeitung, Softwaretechnik, Frequenzzuteilung, aus der computergestützten Hardwareentwicklung und der Analyse sozialer Netzwerke. NP-schwere Probleme können vermutlich nicht optimal in einer polynomiell mit der Eingabegröße wachsenden Zeit gelöst werden. Um sie dennoch effizient zu lösen, entwickelt diese Arbeit Linearzeitdatenreduktions-Algorithmen und Festparameter-Linearzeitalgorithmen – Algorithmen, die beweisbar in Linearzeit laufen, wenn bestimmte Parameter der Probleminstanzen konstant sind. Hierbei wird nicht nur bewiesen, dass die entwickelten Algorithmen in Linearzeit laufen, es findet zusätzlich eine experimentelle Evaluation der meisten der entwickelten Algorithmen statt. Ferner werden die Grenzen von Festparameter-Linearzeitalgorithmen und beweisbar effizienter und effektiver Datenreduktion aufgezeigt.