Exploiting structure in computationally hard voting problems

Umfang: 278 Seiten
Format: 14,8 x 21,0 cm
Erscheinungsjahr: 2016
ISBN 978-3-7983-2825-9
13,00 

Die vorliegende Arbeit beschäftigt sich mit Wahlproblemen und den darin auftretenden Strukturen. Einige dieser Strukturen finden sich in den Wählerpräferenzen,wie zum Beispiel die in der Sozialwahltheorie (engl. social choice theory) intensiv erforschten domain restrictions [ASS02, ASS10], wo die Wählerpräferenzen eine bestimmte eingeschränkte Struktur haben. Andere Strukturen lassen sich wiederum mittels Problemparametern quantitativ ausdrücken, was sie einer parametrisierten Komplexitätsanalyse zugänglich macht [Cyg+15, DF13, FG06, Nie06]. Dieser Zweiteilung folgend ist die Arbeit in zwei Themengebiete untergliedert. Das erste Gebiet beinhaltet Betrachtungen zu Strukturen in Wählerpräferenzen, wie z. B. Single-Crossing-Strukturen oder eindimensionale euklidische Strukturen. Es wird in den Kapiteln 3 bis 5 abgehandelt. Das zweite Themengebiet umfasst die parametrisierte Komplexitätsanalyse zweier NP-schwerer Wahlprobleme, wobei die neu gewonnenen Erkenntnisse zu den im ersten Teil der Arbeit untersuchten Strukturen verwendet werden. Es beschäftigt sich außerdem mit Fragen sowohl zur klassischen als auch zur parametrisierten Komplexität mehrerer Wahlprobleme für zwei in der Praxis weit verbreitete parlamentarische Wahlverfahren. Dieser Teil der Arbeit erstreckt sich über die Kapitel 6 bis 8. Kapitel 3 untersucht die Single-Crossing-Eigenschaft. Diese beschreibt eine Anordnung der Wähler, bei der es für jedes Paar von Alternativen höchstens zwei aufeinanderfolgende Wähler gibt, die unterschiedlicher Meinung über die Reihenfolge dieser beiden Alternativen sind. Wie sich herausstellt, lässt sich diese Eigenschaft durch eine endliche Anzahl von verbotenen Strukturen charakterisieren. Ein Wählerprofil ist genau dann single-crossing, wenn es keine dieser Strukturen beinhaltet. Es wird außerdem ein Algorithmus vorgestellt, der die Single-Crossing-Eigenschaft unter Verwendung von PQ trees [BL76] in O(nm2) Schritten erkennt, wobei n die Anzahl der Wähler und m die Anzahl der Alternativen ist. Kapitel 4 behandelt Wählerprofile, die eindimensional-euklidisch sind, d.h. für die sich die Alternativen und Wähler so auf die reelle Achse abbilden lassen, dass für jeden Wähler und je zwei Alternativen diejenige näher zum Wähler abgebildet wird, die er der anderen vorzieht. Es stellt sich heraus, dass es im Gegensatz zur Single-Crossing-Eigenschaft nicht möglich ist, eindimensionale euklidische Profile durch endlich viele verbotene Strukturen zu charakterisieren. Kapitel 5 beschäftigt sich mit der Frage, wie berechnungsschwer es ist, eine bestimmte strukturelle Eigenschaft wie z.B. die Single-Crossing-Eigenschaft zu erreichen, indem man eine möglichst kleine Anzahl von Wählern oder Kandidaten aus einem Profil entfernt. Es zeigt sich, dass dieses Problem für die Single-Crossing-Eigenschaft durch das Löschen von Wählern zwar in polynomieller Zeit gelöst werden kann, es durch das Löschen von Kandidaten jedoch NP-schwer ist. Für alle anderen Eigenschaften sind beide Löschensvarianten ebenfalls NP-schwer. Allerdings lässt sich für jedes der Probleme auf triviale Weise mittels des Parameters „Anzahl der zu löschenden Wähler bzw. Alternativen“ fixed-parameter tractability zeigen. Das bedeutet, dass sie effizient lösbar sind, wenn der Parameter klein ist. Der Grund dafür ist, dass sich alle hier betrachteten Eigenschaften durch eine endliche Anzahl verbotener Strukturen charakterisieren lassen, deren Zerstörung die gewünschte Eigenschaft herstellt. Kapitel 6 führt die kombinatorische Variante des bekannten Problems CONTROL BY ADDING VOTERS ein, das erstmals durch Bartholdi III, Tovey und Trick [BTT92] beschrieben wurde. In der klassischen Problemstellung gibt es eine Menge von nichtregistrierten Wählern mit bekannten Präferenzen, und es wird eine kleinste Teilmenge von nichtregistrierten Wählern gesucht, sodass deren Hinzufügen zu einem gegebenen Profil einen bestimmten Kandidaten zum Gewinner macht. In der hier beschriebenen Variante wird zusätzlich angenommen, dass für jeden hinzugefügten Wähler auch eine Menge von weiteren Wählern „kostenlos“ hinzugefügt werden kann. Dieses Problem wird für die beiden bekannten Wahlregeln Condorcet-Wahl und Mehrheitswahl untersucht. Wie sich herausstellt, ist die Problemstellung schon für zwei Alternativen NP-schwer. Desweiteren werden Parameter identifiziert, die sich aus den kombinatorischen Eigenschaften dieses Problems ergeben. Für diese lässt sich eine beinahe erschöpfende Beschreibung der parametrisierten Komplexität des Problems erstellen. In einem Fall, bleibt unser Problem für sogenannte Single-Peaked-Präferenzen berechnungsschwer, während es für Single-Crossing-Präferenzen in polynomieller Zeit lösbar ist. Kapitel 7 untersucht, wie verschiedene natürliche Parameter und Preisfunktionen die Berechnungskomplexität des SHIFT BRIBERY-Problems [EFS09] beeiniv flussen. Darin fragt man, ob eine gegebene Alternative zum Gewinner gemacht werden kann, indem sie in den Präferenzen einiger Wähler nach vorne verschoben wird. Jede Verschiebung hat einen Preis, und das Ziel ist es, ein gegegebenes Budget nicht zu überschreiten. Die Ergebnisse sind gemischt: einige Parameter erlauben effiziente Algorithmen, während für andere das Problem schwer bleibt, z.B. für den Parameter „Anzahl der beeinflussten Wähler“ ist das Problem sogar W[2]-schwer. Für die Optimierungsvariante von SHIFT BRIBERY, bei der das verwendete Budget minimiert wird, erzielen wir einen Approximationsalgorithmus mit einem Approximationsfaktor von (1 + epsilon), dessen Laufzeit in ihrem nicht-polynomiellen Anteil nur von epsilon und der Anzahl der Wähler abhängt. Kapitel 8 konzentriert sich auf zwei weitverbreitete parlamentarische Wahlregeln: die successive rule und die amendment rule. Beide Regeln verwenden eine lineare Ordnung der Alternativen, auch Agenda genannt. Es werden drei Probleme untersucht: MANIPULATION fragt nach der kleinstmöglichen Anzahl von Wählern mit beliebigen Präferenzen, deren Hinzufügung einen bestimmten Kandidaten zum Gewinner macht; AGENDA CONTROL fragt, ob es möglich ist, eine Agenda derart festzulegen, dass ein bestimmter Kandidat gewinnt; POSSIBLE/NECESSARY WINNER fragt für unvollständige Wählerpräferenzen und/oder eine nur teilweise festgelegte Agenda, ob eine bestimmte Alternative überhaupt bzw. sicher zum Sieger machen kann. Es stellt sich heraus, dass sowohl MANIPULATION als auch AGENDA CONTROL für beide Wahlregeln in polynomieller Zeit lösbar sind. Allerdings deuten die Ergebnisse einer auf realem Wählerverhalten basierenden, experimentellen Studie darauf hin, dass die meisten Profile nicht durch einige wenige Wähler manipuliert werden können, und dass eine erfolgreiche Kontrolle mittels Agenda typischerweise nicht möglich ist. POSSIBLE WINNER ist für beide Regeln NP-schwer, während NECESSARY WINNER für die amendment rule coNP-schwer und für die successive rule in polynomieller Zeit lösbar ist. Alle betrachtete NP-schwere oder coNP-schwere Wahlprobleme sind „fixed-parameter tractable“ für den Parameter „Anzahl der Alternativen“.