Contents

Introduction 1

1 Basics 5
 1.1 Preliminaries 5
 1.2 Background 11
 1.3 The ship traffic control problem 13
 1.3.1 A precise geometric model 13
 1.3.2 Scheduling on transit segments 17
 1.4 Bidirectional scheduling 19
 1.5 Related work 22

2 Solving the Ship Traffic Control Problem 25
 2.1 Realizing a combinatorial frame via iterated routing 26
 2.2 Collision-free routing for a single ship 29
 2.2.1 Graph for collision-free routing 31
 2.2.2 Forbidden time windows 32
 2.2.3 Routing details for the canal 32
 2.2.4 Running time 35
 2.3 A heuristic for the STCP 38
 2.3.1 Construction of solutions by sequential routing 38
 2.3.2 Improving schedules by local search on the combinatorics 39
 2.3.3 Rolling horizon 41
 2.4 Computational study 42
 2.4.1 Algorithmic components 42
 2.4.2 Combinatorial relaxation 44
 2.4.3 GPS data realized 45

3 Offline Complexity of Bidirectional Scheduling 49
 3.1 Hardness for multiple segments 51
 3.2 Hardness of custom compatibilities 57
 3.2.1 Makespan minimization 57
 3.2.2 Minimization of total completion time 62
 3.3 Dynamic programs for restricted compatibilities 63

4 Competitive Analysis for Bidirectional Scheduling 65
 4.1 The general problem 66
 4.1.1 Lower bound 66
 4.1.2 Upper bound 68
 4.1.3 Polynomial running time 71
 4.2 Identical jobs on a single segment 76
 4.2.1 Lower bound 76
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2 Upper bound</td>
<td>77</td>
</tr>
<tr>
<td>5 Competitive-Ratio Approximation Schemes</td>
<td>83</td>
</tr>
<tr>
<td>5.1 General simplifications and techniques</td>
<td>85</td>
</tr>
<tr>
<td>5.1.1 Simplification within intervals</td>
<td>86</td>
</tr>
<tr>
<td>5.1.2 Irrelevant history</td>
<td>90</td>
</tr>
<tr>
<td>5.2 Abstraction of online algorithms</td>
<td>96</td>
</tr>
<tr>
<td>5.3 Extension to non-preemptive scheduling</td>
<td>101</td>
</tr>
<tr>
<td>6 Approximation Schemes for Bidirectional Scheduling</td>
<td>107</td>
</tr>
<tr>
<td>6.1 Polynomial time approximation scheme</td>
<td>108</td>
</tr>
<tr>
<td>6.2 Competitive ratio approximation scheme</td>
<td>114</td>
</tr>
<tr>
<td>Conclusions</td>
<td>121</td>
</tr>
<tr>
<td>Bibliography</td>
<td>125</td>
</tr>
</tbody>
</table>