Inhaltsverzeichnis

Vorwor	t	i
Kurzfas	sung	iii
Abstrac	t	v
Inhaltsv	verzeichnis	vii
Symbol	verzeichnis	xiii
Indexve	erzeichnis	xviii
Abkürzı	ungsverzeichnis	xx
Glossar		xxii
1 Eiı	nleitung	1
1.1	Randbedingungen bei der Entwicklung automatisierter Landmaschiner	າ 1
1.2	Motivation	3
1.3	Zielsetzung der Arbeit	4
1.4	Landwirtschaftliche Verfahrenskette in der Pflanzenproduktion	5
1.5	Auswahl des in der vorliegenden Arbeit betrachteten landwirtschaf Verfahrens	
2 En	ntwicklungsstand	8
2.1	Marktverfügbare Assistenzsysteme in der Landtechnik	8
2.1	.1 Patente	9
2.2	Forschungsarbeiten an Prozessassistenzsystemen in der Landwirtschaf	t 9
2.2	.1 Methoden der klassischen Bildverarbeitung	10
2	2.2.1.1 Gewichteter Jaccard Koeffizient	11
2	2.1.2 HSV-Farbmodell/HSL-Farbmodell	12
2.2	.2 Maschinelles Lernen/Deep Learning	12
2.2	.3 Light Detection And Ranging (LiDAR)	14

	2.3	Beschreibung der Arbeitsaufgabe des Menschen mit Landmaschinen 14
	2.3.:	1 Technisches Grundgerüst für die Automatisierung der auf der landwirtschaftlichen Arbeitsprozess bezogenen Aufgaben de maschinenführenden Person
	2.4	Verhalten von Sensoren in Szenarien mit Staub
		1 LiDAR-Sensoren
		2 RGB-Kamera
	2.5	Verhalten von Sensoren in Szenarien mit geringem Licht
2		
3		ronomische Arbeitsqualität im Kontext automatisierter Landmaschinen 20
	3.1	Definition des Begriffs "agronomische Arbeitsqualität"
	3.2	Qualitätskriterien bei der Stoppelbearbeitung
	3.2.	1 Zusammenhang zwischen Arbeitsqualität an der Oberfläche und dem sich daraus ergebenden Bodenzustand
	2.2	
	3.3	Bekannte Methoden zur Messung des Bodenbedeckungsgrades
	3.4	Eigener Ansatz für die Beschreibung der Arbeitsaufgabe mit einer Traktor Anbaugeräte-Kombination
	3.5	Eigener generischer Ansatz für die Automatisierung der auf der
	3.5	landwirtschaftlichen Arbeitsprozess bezogenen Aufgaben de
		maschinenführenden Person
	3.6	Ableitung der zu verwendenden Methoden 30
	3.7	Weitere Vorgehensweise 4
4	Bild	dverarbeitung42
	4.1	Anforderungen und Konzept
	4.1.:	Anforderungen an eine Bildverarbeitungsmethode zur Detektion de
		Bodenbedeckungsgrades
	4.1.	2 Anforderungen an eine Bildverarbeitungsmethode zur Detektion von
		signifikanten Luftstaubkonzentrationen44
	4.1.	3 Konzept
	4.2	Datenerfassung

	4.2.1	Anforderungen an den zu erstellenden Datensatz	46
	4.2.2	Aufbau der zwei Versuchsträger	47
	4.2.3	Vorgehensweise zur Akquirierung der Rohdaten	52
4	.3 E	rstellen des Datensatzes zur Detektion des Bodenbedeckungsgrades	52
	4.3.1	Datensatz für Training und Validierung	53
	4.3.2	Testdatensätze	58
	4.3.	2.1 Erster Testdatensatz	58
	4.3.	2.2 Zweiter Testdatensatz	59
4	.4 B	Bildverarbeitungsmethoden zur Detektion des Bodenbedeckungsgrades v	or
	S	troh und Stoppeln	59
	4.4.1	Vorläufige Eingrenzung der Problemstellung	60
	4.4.2	Wahl des bildverarbeitungstechnischen Ansatzes	60
	4.4.3	Klassische Bildverarbeitung	61
	4.4.4	Annotierung der Daten	70
	4.4.	4.1 Beschreibung der neuen Methode	70
	4.4.	4.2 Bewertung der resultierenden Datenqualität	73
	4.4.5	Deep Learning	78
	4.4.6	Evaluierung und Vergleich der Bildverarbeitungsmethoden	86
4	.5 E	rweiterung der Bildverarbeitungsmethode und Erhöhung der Robustheit	87
	4.5.1	Grünpflanzen	88
	4.5.2	Frontkamera	91
	4.5.3	Labeling	92
	4.5.4	Data Augmentation	94
	4.5.5	Trainingsergebnisse	95
4	.6 E	Intwicklung einer robusten Methode zur Detektion von Luftstaub	97
	4.6.1	Datensatz für die Entwicklung einer Methode zur Detektion von Luftstau	b
			99

	4.6.	1.1 Datensatz für Training und Validierung	100
	4.6.	1.2 Testdatensatz	102
	4.6.2	Training des Klassifikators	102
	4.6.3	Test auf realem Feld	104
	4.7 II	mplementierter Bildverarbeitungsprozess	105
5	Verh	altensgenerierung der Traktor-Anbaugeräte-Kombination	107
	5.1 A	rbeitskennfelder	108
	5.1.1	Versuchsbedingungen	109
	5.1.2	Auswertung	110
	5.2 N	Nethoden für die technische Umsetzung des 3-Ebenenmodells	114
	5.2.1	Prozessplanungsebene	114
	5.2.2	Prozessoptimierungsebene	116
	5.2.3	Prozessstabilisierungsebene	124
	5.2.4	Regelstrecke und Sensoren	127
	5.2.5	Verhalten bei signifikanten Luftstaubkonzentrationen	128
	5.2.6	Zustandsautomat	129
	5.3 S	tabilität der Regelkreise	131
	5.3.1	Stabilisierungsebene	131
	5.3.2	Optimierungsebene	132
	5.4 lı	mplementierung	140
	5.5 F	lardware-Architektur	141
6	Verif	fizierung des Gesamtsystems im Feld	143
	6.1	Grundlegende Verifizierung der Funktionalität	144
	6.1.1	Charakterisierung der Regelstrecke	145
	6.1.2	Überprüfung der Funktionalität der Regelung	146
	6.1.3	Einfluss des Systems auf den Bodenbedeckungsgrad	149
	6.1.4	Fazit	151

	6.2	Verifizierung des dynamischen Verhaltens des Systems	151
	6.2.	1 Charakterisierung der Regelstrecke	153
	6.2.	2 Verifizierung des dynamischen Verhaltens der Regelung	155
	6.2.	3 Vertiefende Tests verschiedener Reglerverstärkungen	164
	6.2.	4 Fazit	169
	6.3	Nachweis des statistisch signifikanten Einflusses des Systems auf	den
		Bodenbedeckungsgrad	170
	6.4	Verifizierung des Systems unter Bedingungen mit signifikantem Luftst	
	6.4.	1 Test des Binären Klassifikators	175
	6.4.	2 Auswirkung auf das Arbeitsergebnis	176
	6.4.	3 Fazit	181
7	Zu	sammenfassung und Ausblick	182
	7.1	Zusammenfassung	182
	7.2	Schlussfolgerungen	185
	7.3	Übertragbarkeit auf weitere Arbeitsprozesse und Anbaugeräte	188
	7.4	Ausblick	189
	7.5	Schlussbemerkung	191
8	Lite	eraturverzeichnis	193
9	Ab	bildungsverzeichnis	208
10	Tal	bellenverzeichnis	216
11	. An	hang	219
	11.1	Statistiken des ersten Testdatensatzes	219
	11.2	Statistiken des zweiten Testdatensatzes	221
	11.3	Übersicht Aufnahmezeitpunkte des Trainings- und Validierungsdatensa	
	-	für die Bodenbedeckungsgraddetektion	
	11.4	Bilder des ersten Experiments zur Bewertung der Konsistenz der Annotier	ung
			224

Inhaltsverzeichnis

11.5	Netzwerkarchitektur von Smallnet	25
11.6	Beispielbilder des auf Grünpflanzen erweiterten Annotierungsprogramm	ns
		26
11.7	Bilder des zweiten Experiments zur Bewertung der Konsistenz d	er
	Annotierung	28
11.8	Verteilung der Bilder im Datenset zum Testen der binären Staubklassifizierun	ng
		29
11.9	Netzwerkarchitektur für die binäre Klassifizierung 23	33
11.10	Regelungstechnisches Gesamtkonzept	34
11.11	Messschriebe der Versuche zur Verifizierung der Funktionalität des Syster	ns
		35
11.12	Messschriebe der Versuche zur vertiefenden dynamischen Verifizierung 23	37