TABLE OF CONTENTS

THEORETICAL PART I

1		Introduction	1
	1.1	Tris(pentafluorophenyl)borane, [B(C ₆ F ₅) ₃]: Structural and Mechanistic aspects	2
	1.1.1	B(C ₆ F ₅) ₃ : Structure and Lewis-acidity comparison	2
	1.1.2	Mechanism of B(C ₆ F ₅) ₃ -Catalyzed Hydrosilylation of C=O bonds in	3
		Carbonyl Compounds	
	1.1.3	The Mechanism of B(C ₆ F ₅) ₃ -Catalyzed Hydrosilylation of C=N bond in	7
		Imines	
	1.2	Selected Examples of B(C ₆ F ₅) ₃ -catalyzed H–H and Si–H activation	10
	1.2.1	Selected Examples of B(C ₆ F ₅) ₃ -Catalyzed Hydrosilylation Reactions	10
	1.2.2	Selected Examples of B(C ₆ F ₅) ₃ -Catalyzed Hydrogenation Reactions	16
	1.2.3	Selected Examples of B(C ₆ F ₅) ₃ -Catalyzed Deoxygenation Reactions	21
	1.3	Objective and Task	25
2		B(C ₆ F ₅) ₃ -CATALYZED REDUCTION OF HYDRAZONES AND	27
		ALDOXIME-ETHERS	
	2.1	Introduction	27
	2.2	B(C ₆ F ₅) ₃ -Catalyzed Hydrogenation of Hydrazones	29
	2.2.1	B(C ₆ F ₅) ₃ -Catalyzed Hydrogenation of Ketone-Derived Hydrazones	29
	2.2.2	B(C ₆ F ₅) ₃ -Catalyzed Hydrogenation of Aldehyde-Derived Hydrazones	32
	2.3	B(C ₆ F ₅) ₃ -Catalyzed Hydrogenation of Aldoximes Ethers	36
	2.4	Conclusion	38

3	B(C ₆ F ₅) ₃ -CATALYZED REDUCTION OF PHOSPHINE-OXIDES	39
3.1	Introduction	39
3.2	B(C ₆ F ₅) ₃ -Catalyzed Reduction of Phosphine-Oxides with Hydrosilanes as Reductant	42
3.3	Conclusion	44
4	B(C ₆ F ₅) ₃ -CATALYZED REDUCTION OF AROMATIC AND	46
	ALIPHATIC NITRO GROUPS WITH HYDROSILANES	
4.1	Introduction	46
4.2	B(C ₆ F ₅) ₃ -Catalyzed Reduction of Nitrobenzene and Derivatives:	47
	Optimization Studies and Substrate Scope	
4.4	Conclusion	51
5	B(C ₆ F ₅) ₃ -CATALYZED REDUCTION OF SULFOXIDES AND	52
	SULFONES TO SULFIDES WITH HYDROSILANES	
5.1	Introduction	52
5.2	B(C ₆ F ₅) ₃ -Catalyzed Reduction of Sulfoxides and Sulfones to Sulfides: Optimization Studies and Substrate Scope	53
5.3	Conclusion	57
6	$B(C_6F_5)_3$ -Catalyzed Chemoselective Defunctionalization of Ether-Containing Primary Alkyl Tosylates with Hydrosilanes	58
6.1	Introduction	58
6.2	Screening of Primary and Secondary Sulfonates, Triflates and Bromides as Leaving group	61

6.3	B(C ₆ F ₅) ₃ -Catalyzed Chemoselective Cleavage of Tosylates in the presence	62
6.4	of Silyl Ethers $B(C_6F_5)_3\text{-Catalyzed Chemoselective Cleavage of Tosylates in the presence }$ of Aryl Ethers	64
6.5	B(C ₆ F ₅) ₃ -Catalyzed Chemoselective Cleavage of Tosylates in the presence of Olefin and Cyclic Ethers	65
6.6	B(C ₆ F ₅) ₃ -Catalyzed Chemoselective Cleavage of Carbohydrate	66
6.7	Conclusion	67
THEORE	ETICAL PART II	
7	ASYMMETRIC BRØNSTED ACID-CATALYZED TRANSFER	70
7	ASYMMETRIC BRØNSTED ACID-CATALYZED TRANSFER HYDROGENATION OF UNBIASED C=C BOND	70
7		70
	HYDROGENATION OF UNBIASED C=C BOND	
7.1	HYDROGENATION OF UNBIASED C=C BOND Introduction	70
7.1 7.2	HYDROGENATION OF UNBIASED C=C BOND Introduction Objective and Task	70 80
7.1 7.2	HYDROGENATION OF UNBIASED C=C BOND Introduction Objective and Task Optimization Studies on Brønsted Acid-Catalyzed Transfer	70 80
7.1 7.2	HYDROGENATION OF UNBIASED C=C BOND Introduction Objective and Task Optimization Studies on Brønsted Acid-Catalyzed Transfer Hydrogenation of Electronically and Structurally Unbiased Alkenes	70 80

APPENDIX