DANKE!		2
<u>ZUSA</u>	AMMENFASSUNG	7
SUMMARY		9
<u>1 IN</u>	NTRODUCTION	11
1.1 (CRISPR/CAS SYSTEM	11
1.1.1	ADAPTIVE IMMUNE SYSTEM IN BACTERIA	11
1.1.2	IMPORTANCE OF PAM SEQUENCE	11
1.1.3	RNA-PROTEIN COMPLEX	12
1.1.4	APPLICATION FOR GENOME EDITING	13
1.1.5	Specificity	14
1.2	LIMB DEVELOPMENT	16
1.2.1	PATTERNING	17
1.2.2	MUSCLES AND NEURONS	18
1.2.3	CHONDROGENESIS	19
1.3	GENE REGULATION	20
1.3.1	Promoter	20
1.3.2	ENHANCER	20
1.3.3	INSULATOR	22
1.3.4	COMPARTMENTS	22
1.3.5	CHROMOSOME CONFORMATION CAPTURE	23
1.3.6	TOPOLOGICALLY ASSOCIATING DOMAINS	23
1.3.7	LOOPING	25
1.4	STRUCTURAL VARIATIONS	26
1.5	Аім	28
<u>2</u> <u>M</u>	ATERIALS AND METHODS	29
2.1	MOUSE MODELS	29
2.1.1	CRISPR/CAS9 SYSTEM	29
2.1.2	FRT/FLPE SYSTEM	31
2.1.3	PRONUCLEAR INJECTIONS	32
2.2	EXPRESSION AND PHENOTYPE ANALYSIS	32 4

TABLE OF CONTENTS

2.2.1	LACZ STAINING	32
2.2.2	WHOLE MOUNT IN SITU HYBRIDISATION	32
2.2.3	SKELETAL STAINING	33
2.2.4	RNA-sequencing	33
2.3	HUMAN SAMPLES	33
2.3.1	SKIN BIOPSY	33
2.3.2	GENOMIC DNA	33
2.4	4C-sequencing	34
2.4.1	LIBRARY PREPARATION	34
2.5	CHIP-SEQ DATA	39
<u>3 R</u>	RESULTS	<u>40</u>
31	STRUCTURAL VARIATIONS AT THE $FPHAA$ LOCUS LEAD TO DIFFERENT HUMAN L	IMR
J.I PHEN	STRUCTURAL VARIATIONS AT THE LT HA4 LOCUS LEAD TO DIFFERENT HUMANT	4 0
311	IDENTIFICATION OF A NOVEL TYPE OF PREAXIAL BRACHYDACTYLY CAUSED BY	40
MEGA	ABASE-SIZED DELETIONS	40
312	DELETIONS INVERSIONS AND DUPLICATIONS ASSOCIATED WITH DISTINCT LIMB	10
MALE	FORMATIONS I OCALISE WITHIN FPHA4 TAD	41
3.2	DISEASE CAUSING GENES IDENTIFICATION USING MOUSE MODELS	43
321	GENERATION OF STRUCTURAL VARIATIONS USING CRISPR/CAS9 SYSTEM	43
322	CREATING A MOUSE MODEL FOR BRACHYDACTYLY AND F-SYNDROME	43
3.2.3	EXPRESSION ANALYSIS SHOWS ECTOPIC ACTIVATION OF PAX3. WNT6 AND IHH	45
3.2.4	MOUSE MODEL CARRYING A DELETION DEVELOPS BRACHYDACTYLY	48
3.2.5	PATHOGENIC EFFECT OF PAX3, WNT6, AND IHH WHEN OVEREXPRESSED IN DEVELO	PING
LIMB	BUDS	50
3.3	CHROMATIN INTERACTION PROFILES REVEAL GAIN OF CONTACT BETWEEN DISE	EASE
CAUS	SING GENES AND <i>Epha4</i> enhancer cluster	54
3.4	TAD BOUNDARIES PLAY A PATHOMECHANISTIC ROLE IN CONTACT ESTABLISHM	ENT
BETV	VEEN DISEASE CAUSING GENES AND <i>EPHA4</i> ENHANCER	60
<u>4</u> D	DISCUSSION	63
4.1	CRISPR/CAS9 SYSTEM AS A TOOL TO MODEL HUMAN DISEASE	63
4.2	R ECAPITULATION OF HUMAN PHENOTYPES	65
4.2.1	MESODERMAL EXPRESSION OF $PAX3$ and $WNT6$ inhibits chondrogenesis in th	E LIMB
BUD		65

4.3		A CLUSTER OF LIMB ENHANCERS IS RESPONSIBLE FOR ECTOPIC GENE ACTIVATION	67
4.3	.1	IS ENHANCER ADOPTION A UNIVERSAL PATHOMECHANISM?	67
4.4		3D CHROMATIN ORGANISATION AND TADS	69
4.4	.1	C-TECHNIQUES CAN BE USED IN HUMAN CELLS TO VISUALISE THE EFFECTS OF	
STR	RUG	CTURAL VARIATIONS	69
4.4	.2	STRUCTURAL VARIANTS CAN CAUSE INTERACTION BETWEEN PREVIOUSLY ISOLATED	
TA	D	S, LEADING TO DISEASE-RELEVANCE FOR BOUNDARY ELEMENTS	69
4.4	.3	TOPOLOGICAL DOMAIN AS A UNIT FOR GENE REGULATION	72
4.4	.4	PRODUCED REARRANGEMENTS ARE USEFUL FOR FUTURE CHROMATIN STRUCTURE	
STU	JDI	IES	73
5	D	FFDENCES	74
<u>5</u>	<u>N</u>	ET ENENCES	<u>/4</u>
<u>6</u>	A	BBREVIATIONS	82
<u>7</u>	<u>S(</u>	CIENTIFIC PUBLICATIONS	84
<u>8</u>	A	PPENDIX	85
8.1		EMBRYONIC STEM CELL CULTURE PROTOCOL	85